metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Aqua(cyanido- κ C){6,6'-dimethoxy-2,2'-[o-phenylenebis(nitrilomethanylylidene)]diphenolato- $\kappa^4 O^1$, N, N', $O^{1'}$ }cobalt(III) acetonitrile monosolvate

Yang Lin, Guang-Ming Li,* Peng Chen, Peng-Fei Yan and **Guang-Feng Hou**

Key Laboratory of Functional Inorganic Materials Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail: gmli_2000@163.com

Received 13 July 2011; accepted 21 July 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.096; data-to-parameter ratio = 17.0.

In the title complex, $[Co(C_{22}H_{18}N_2O_4)(CN)(H_2O)]$ ·CH₃CN, the Co^{III} ion is six-coordinated in a distorted octahedral environment defined by two N atoms and two O atoms from a salen ligand in the equatorial plane and one O atom from a water molecule and one C atom from a cyanide group at the axial positions. O-H···O hydrogen bonds connect adjacent complex molecules into dimers. $C-H \cdots N$ hydrogen bonds and $\pi - \pi$ interactions between the benzene rings [centroidcentroid distances = 3.700(2) and 3.845(2)Å] are also present.

Related literature

For the synthesis of the ligand, see: Costes et al. (2000). For related transition-metal complexes, see: Przychodzeń et al. (2005). For bond-valence calculations, see: Spek (2009).

Experimental

Crystal data

$[Co(C_{22}H_{18}N_2O_4)(CN)(H_2O)]$	b = 13.209 (3) Å
C_2H_3N	c = 18.906 (6) Å
$M_r = 518.40$	$\beta = 118.30 \ (2)^{\circ}$
Monoclinic, $P2_1/c$	$V = 2381.1 (10) \text{ Å}^3$
a = 10.829 (2) Å	Z = 4

Mo $K\alpha$ radiation	
$\mu = 0.77 \text{ mm}^{-1}$	

Data collection

22543 measured reflections
5426 independent reflections
4439 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.034$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	319 parameters
$vR(F^2) = 0.096$	H-atom parameters c
S = 1.08	$\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ \AA}^{-3}$
5426 reflections	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Table 1 Selected bond lengths (Å).

Co1-C23	1.869 (2)	Co1-O1	1.8948 (13)
Co1-N1	1.8944 (15)	Co1-O2	1.8998 (14)
Co1-N2	1.8972 (16)	Co1-O5	2.0194 (14)
01-112	1.0972 (10)	$\omega_1 = 0.5$	2.0194 (14

T = 293 K

 $0.34 \times 0.31 \times 0.29 \text{ mm}$

constrained

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O5−H51···O3 ⁱ	0.85	2.33	2.922 (2)	127
$O5-H51\cdots O1^{i}$	0.85	2.00	2.799 (2)	156
$O5-H52 \cdot \cdot \cdot O2^{i}$	0.85	2.24	2.813 (2)	124
$O5-H52\cdots O4^{i}$	0.85	2.10	2.902(2)	158
C10−H10···N4 ⁱⁱ	0.93	2.61	3.433 (3)	148
C15−H15···N3	0.93	2.56	3.440 (3)	159

Symmetry codes: (i) -x + 2, -y, -z; (ii) $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

This work was supported financially by the National Natural Science Foundation of China (grant Nos. 20872030 and 20972043). Heilongiiang Province (grant Nos. 2009RFXXG201, GC09A402 and 2010td03) and Heilongjiang University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2451).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Costes, J. P., Dahan, F. & Dupuis, A. (2000). Inorg. Chem. 39, 5994-6000.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

- Przychodzeń, P., Rams, M., Guyard-Duhayon, C. & Sieklucka, B. (2005). Inorg. Chem. Commun. 8, 350-354.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2011). E67, m1162 [doi:10.1107/S1600536811029461]

Aqua(cyanido- κC){6,6'-dimethoxy-2,2'-[*o*-phenylenebis(nitrilomethanylylidene)]diphenolato- $\kappa^4 O^1$, N, N', O^1 '}cobalt(III) acetonitrile monosolvate

Y. Lin, G.-M. Li, P. Chen, P.-F. Yan and G.-F. Hou

Comment

Transition metal complexes with spectroscopic and magnetic properties are currently of considerable interest. As a continuing work for the studies of salen ligands (Costes *et al.*, 2000) and transition metal complexes (Przychodzeń *et al.*, 2005), we present here the synthesis and crystal structure of the title compound.

The bond valence calculation (Spek, 2009) indicated that the Co atom is in a 3+ state, which can be produced by Li(TCNQ) oxidating Co(II) atom [TCNQ = 2,2'-(2,5-cyclohexadiene-1,4-diylidene)bis(propanedinitrile)]. Meanwhile, TCNQ decomposed to produce cyanide group. In the title complex, the Co^{III} ion is six-coordinated in a distorted octahedral environment defined by two imino N atoms and two phenolate O atoms from the salen type ligand, one O atom from a water molecule and one C atom from a cyanide group (Fig. 1, Table 1). O—H…O hydrogen bonds connect two adjacent complex molecules into a dimer (Fig. 2, Table 2). C—H…N hydrogen bonds and π - π interactions between the benzene rings [centroid–centroid distance = 3.700 (2) and 3.845 (2) Å] are present.

Experimental

A solution of CoL (0.078 g, 0.1 mmol) [L = N,N-bis(3-methoxy-2-oxidobenzylidene) -1,2-diaminobenzene] (Costes *et al.*, 2000) in CH₃CN (25 ml) was added dropwise to a solution of LiTCNQ (0.044 g, 0.2 mmol) in H₂O (20 ml). The reaction was carried out under nitrogen atmosphere, using standard Schlenk techniques and degassed solvents. Reddish brown single crystals suitable for X-ray analysis were obtained in five days. Analysis, calculated for C₂₅H₂₃CoN₄O₅: C 57.81, H 4.66, N 10.79; found: C 57.76, H 4.74, N 10.83%.

Refinement

H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å and with $U_{iso}(H) = 1.2(1.5 \text{ for methyl})U_{eq}(C)$. The water H atoms were initially located in a difference Fourier map and then treated as riding atoms, with O—H = 0.85 Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. A view of the hydrogen-bonded dimer, showing hydrogen bonds (green dashed lines) and π - π interactions (blue dashed lines).

Aqua(cyanido- κ C){6,6'-dimethoxy-2,2'-[o- phenylenebis(nitrilomethanylylidene)]diphenolato- κ ⁴O¹,*N*,*N*',O^{1'}}cobalt(III) acetonitrile monosolvate

Crystal data	
$[Co(C_{22}H_{18}N_2O_4)(CN)(H_2O)] \cdot C_2H_3N$	F(000) = 1072
$M_r = 518.40$	$D_{\rm x} = 1.446 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 17687 reflections
a = 10.829 (2) Å	$\theta = 3.1 - 27.5^{\circ}$
b = 13.209 (3) Å	$\mu = 0.77 \text{ mm}^{-1}$
c = 18.906 (6) Å	<i>T</i> = 293 K
$\beta = 118.30 \ (2)^{\circ}$	Block, brown
$V = 2381.1 (10) \text{ Å}^3$	$0.34 \times 0.31 \times 0.29 \text{ mm}$
Z = 4	

Data collection

Rigaku R-AXIS RAPID diffractometer	5426 independent reflections
Radiation source: fine-focus sealed tube	4439 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.034$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	$h = -13 \rightarrow 14$
$T_{\min} = 0.780, T_{\max} = 0.811$	$k = -17 \rightarrow 17$
22543 measured reflections	$l = -24 \rightarrow 24$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.096$	H-atom parameters constrained
<i>S</i> = 1.08	$w = 1/[\sigma^2(F_0^2) + (0.046P)^2 + 0.9325P]$ where $P = (F_0^2 + 2F_c^2)/3$
5426 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
319 parameters	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$

0 restraints

$\Delta \rho_{min} = -0.35 \text{ e } \text{\AA}^{-3}$

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	0.5547 (3)	0.1426 (2)	-0.19502 (14)	0.0647 (8)
H1A	0.5301	0.0812	-0.2259	0.097*
H1B	0.5808	0.1932	-0.2219	0.097*
H1C	0.4757	0.1661	-0.1896	0.097*
C2	0.7165 (2)	0.20216 (16)	-0.06373 (12)	0.0371 (4)
C3	0.6721 (2)	0.30104 (17)	-0.08039 (14)	0.0469 (5)
H3	0.6029	0.3184	-0.1317	0.056*
C4	0.7297 (3)	0.37577 (17)	-0.02117 (15)	0.0504 (6)
H4	0.6997	0.4425	-0.0334	0.060*
C5	0.8296 (2)	0.35112 (16)	0.05426 (14)	0.0441 (5)
Н5	0.8671	0.4012	0.0934	0.053*
C6	0.8773 (2)	0.24945 (14)	0.07391 (12)	0.0341 (4)
C7	0.8218 (2)	0.17321 (14)	0.01489 (11)	0.0312 (4)
C8	0.9842 (2)	0.22983 (15)	0.15339 (12)	0.0333 (4)
H8	1.0159	0.2846	0.1885	0.040*
С9	1.1540 (2)	0.13197 (15)	0.26124 (11)	0.0318 (4)
C10	1.2143 (2)	0.21081 (16)	0.31618 (12)	0.0405 (5)
H10	1.1825	0.2769	0.3018	0.049*
C11	1.3210 (2)	0.18993 (18)	0.39164 (13)	0.0469 (5)
H11	1.3610	0.2422	0.4286	0.056*
C12	1.3696 (2)	0.09200 (19)	0.41328 (13)	0.0466 (5)
H12	1.4418	0.0790	0.4647	0.056*
C13	1.3121 (2)	0.01354 (17)	0.35951 (12)	0.0401 (5)
H13	1.3456	-0.0521	0.3743	0.048*
C14	1.2030 (2)	0.03317 (14)	0.28252 (11)	0.0316 (4)
C15	1.1581 (2)	-0.13640 (15)	0.23320 (11)	0.0323 (4)
H15	1.2264	-0.1561	0.2841	0.039*
C16	0.9948 (2)	-0.19407 (14)	0.09435 (11)	0.0300 (4)
C17	1.0922 (2)	-0.21447 (14)	0.17560 (11)	0.0324 (4)
C18	1.1305 (2)	-0.31644 (15)	0.20116 (13)	0.0397 (5)
H18	1.1953	-0.3296	0.2544	0.048*
C19	1.0737 (3)	-0.39453 (16)	0.14897 (14)	0.0455 (5)
H19	1.0989	-0.4608	0.1666	0.055*
C20	0.9769 (2)	-0.37543 (15)	0.06817 (13)	0.0419 (5)
H20	0.9385	-0.4292	0.0326	0.050*
C21	0.9386 (2)	-0.27817 (15)	0.04140 (12)	0.0345 (4)
C22	0.7825 (3)	-0.32967 (19)	-0.09336 (14)	0.0562 (7)
H22A	0.7288	-0.3007	-0.1458	0.084*
H22B	0.7218	-0.3684	-0.0797	0.084*
H22C	0.8537	-0.3731	-0.0932	0.084*
C23	0.8551 (2)	-0.00903 (15)	0.15346 (12)	0.0348 (4)
Co1	0.99408 (3)	0.018833 (18)	0.124299 (14)	0.02757 (9)
N1	1.04207 (17)	0.14260 (11)	0.18179 (9)	0.0293 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

N2	1.13171 (17)	-0.03998 (12)	0.22136 (9)	0.0296 (3)
N4	0.7711 (2)	-0.02985 (16)	0.17105 (14)	0.0538 (5)
01	0.95350 (15)	-0.10306 (10)	0.06457 (7)	0.0332 (3)
O2	0.86109 (14)	0.07822 (10)	0.02591 (8)	0.0343 (3)
O3	0.84670 (17)	-0.25085 (11)	-0.03599 (8)	0.0434 (4)
O4	0.66969 (16)	0.12382 (12)	-0.11736 (9)	0.0465 (4)
O5	1.14913 (14)	0.04801 (10)	0.09656 (8)	0.0339 (3)
H51	1.1136	0.0809	0.0527	0.051*
H52	1.1992	0.0032	0.0901	0.051*
N3	1.4525 (3)	-0.2365 (3)	0.39165 (18)	0.1011 (11)
C24	1.4969 (3)	-0.3138 (3)	0.41113 (18)	0.0685 (8)
C25	1.5580 (4)	-0.4129 (3)	0.4384 (3)	0.1254 (18)
H25A	1.6559	-0.4058	0.4759	0.188*
H25B	1.5474	-0.4524	0.3933	0.188*
H25C	1.5113	-0.4461	0.4643	0.188*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0577 (16)	0.0727 (19)	0.0373 (12)	0.0148 (13)	0.0009 (11)	0.0020 (12)
C2	0.0379 (11)	0.0340 (10)	0.0368 (10)	0.0067 (8)	0.0156 (9)	0.0031 (9)
C3	0.0467 (13)	0.0404 (12)	0.0450 (12)	0.0148 (10)	0.0148 (10)	0.0137 (10)
C4	0.0585 (14)	0.0275 (10)	0.0612 (14)	0.0144 (10)	0.0251 (12)	0.0115 (11)
C5	0.0518 (13)	0.0264 (10)	0.0522 (13)	0.0078 (9)	0.0231 (11)	0.0017 (10)
C6	0.0374 (10)	0.0254 (9)	0.0409 (10)	0.0058 (8)	0.0197 (9)	0.0021 (8)
C7	0.0333 (10)	0.0283 (9)	0.0353 (10)	0.0063 (7)	0.0191 (8)	0.0039 (8)
C8	0.0424 (11)	0.0246 (9)	0.0371 (10)	0.0006 (8)	0.0221 (9)	-0.0045 (8)
C9	0.0343 (10)	0.0296 (10)	0.0297 (9)	-0.0027 (8)	0.0137 (8)	-0.0032 (8)
C10	0.0450 (12)	0.0314 (10)	0.0392 (11)	-0.0020 (9)	0.0152 (9)	-0.0068 (9)
C11	0.0490 (13)	0.0429 (13)	0.0393 (11)	-0.0096 (10)	0.0132 (10)	-0.0138 (10)
C12	0.0419 (12)	0.0524 (14)	0.0317 (10)	-0.0052 (10)	0.0063 (9)	-0.0039 (10)
C13	0.0396 (11)	0.0374 (11)	0.0342 (10)	-0.0005 (9)	0.0101 (9)	0.0020 (9)
C14	0.0340 (10)	0.0298 (10)	0.0297 (9)	-0.0024 (7)	0.0142 (8)	-0.0015 (8)
C15	0.0366 (10)	0.0300 (10)	0.0286 (9)	0.0033 (8)	0.0142 (8)	0.0044 (8)
C16	0.0376 (10)	0.0213 (8)	0.0336 (9)	0.0009 (7)	0.0190 (8)	0.0002 (8)
C17	0.0391 (11)	0.0245 (9)	0.0338 (9)	0.0024 (8)	0.0176 (8)	0.0027 (8)
C18	0.0493 (12)	0.0290 (10)	0.0386 (11)	0.0070 (9)	0.0192 (10)	0.0072 (9)
C19	0.0622 (15)	0.0221 (10)	0.0511 (13)	0.0055 (9)	0.0261 (11)	0.0056 (9)
C20	0.0582 (14)	0.0241 (10)	0.0439 (11)	-0.0022 (9)	0.0246 (10)	-0.0056 (9)
C21	0.0416 (11)	0.0273 (10)	0.0340 (10)	-0.0020 (8)	0.0175 (9)	-0.0022 (8)
C22	0.0664 (16)	0.0424 (13)	0.0420 (12)	-0.0086 (12)	0.0110 (12)	-0.0140 (11)
C23	0.0384 (11)	0.0269 (9)	0.0352 (10)	-0.0009 (8)	0.0143 (9)	-0.0044 (8)
Col	0.03420 (15)	0.02039 (13)	0.02460 (13)	0.00213 (10)	0.01105 (10)	-0.00039 (10)
N1	0.0368 (9)	0.0240 (8)	0.0277 (7)	0.0003 (6)	0.0158 (7)	-0.0023 (6)
N2	0.0343 (8)	0.0262 (8)	0.0264 (7)	0.0000 (6)	0.0130 (6)	-0.0009 (6)
N4	0.0546 (12)	0.0493 (12)	0.0678 (14)	-0.0096 (10)	0.0373 (11)	-0.0099 (10)
01	0.0463 (8)	0.0212 (6)	0.0261 (6)	0.0023 (5)	0.0123 (6)	-0.0006 (5)
O2	0.0420 (8)	0.0260 (7)	0.0286 (6)	0.0069 (6)	0.0116 (6)	0.0004 (5)

O3	0.0547 (9)	0.0283 (7)	0.0341 (7)	-0.0033 (6)	0.0104 (7)	-0.0058 (6)	
O4	0.0471 (9)	0.0422 (9)	0.0346 (8)	0.0103 (7)	0.0067 (7)	0.0018 (7)	
O5	0.0400 (7)	0.0303 (7)	0.0324 (7)	0.0050 (6)	0.0180 (6)	0.0024 (6)	
N3	0.087 (2)	0.088 (2)	0.088 (2)	0.0309 (18)	0.0079 (17)	0.0136 (18)	
C24	0.0522 (16)	0.073 (2)	0.0594 (16)	0.0092 (14)	0.0092 (13)	-0.0069 (15)	
C25	0.083 (3)	0.059 (2)	0.185 (5)	0.0098 (19)	0.023 (3)	-0.001 (3)	
Geometric paran	neters (Å, °)						
C1—O4		1.426 (3)	C15	5—C17	1.422	(3)	
C1—H1A		0.9600	C15—H15		0.9300		
C1—H1B		0.9600	C16—O1		1.313 (2)		
C1—H1C		0.9600	C16—C17		1.417 (3)		
C2—O4		1.367 (3)	C16	5—C21	1.424	(3)	
C2—C3		1.376 (3)	C17	C17—C18		1.425 (3)	
С2—С7		1.431 (3)	C18	3—C19	1.357	(3)	
C3—C4		1.398 (3)	C18	3—H18	0.930	0	
С3—Н3		0.9300	C19	9—С20	1.406	(3)	
C4—C5		1.359 (3)	C19	Э—Н19	0.930	0	
C4—H4		0.9300	C20)—C21	1.371	(3)	
C5—C6		1.424 (3)	C20)—Н20	0.930	0	
С5—Н5		0.9300	C21	—ОЗ	1.372	(2)	
С6—С7		1.409 (3)	C22	2—03	1.424	(3)	
C6—C8		1.420 (3)	C22	2—H22A	0.960	0	
С7—О2		1.309 (2)	C22	2—Н22В	0.960	0	
C8—N1		1.300 (2)	C22	2—Н22С	0.960	0	
С8—Н8		0.9300	C23	3—N4	1.140	(3)	
C9—C14		1.394 (3)	Col	L—C23	1.869	(2)	
C9—C10		1.395 (3)	Col	I—N1	1.894	4 (15)	
C9—N1		1.421 (2)	Col	l—N2	1.897	2 (16)	
C10-C11		1.372 (3)	Col	I—01	1.894	8 (13)	
C10—H10		0.9300	Col	—02	1.899	8 (14)	
C11—C12		1.383 (3)	Col	L—O5	2.019	4 (14)	
C11—H11		0.9300	O5-	—H51	0.850	0	
C12—C13		1.377 (3)	O5-	—Н52	0.850	0	
C12—H12		0.9300	N3-	C24	1.114	(4)	
C13—C14		1.397 (3)	C24	I—C25	1.447	(5)	
C13—H13		0.9300	C25	5—H25A	0.960	0	
C14—N2		1.421 (2)	C25	5—Н25В	0.960	0	
C15—N2		1.301 (2)	C25	5—Н25С	0.960	0	
O4—C1—H1A		109.5	C19)—C18—C17	120.9	0 (19)	
O4—C1—H1B		109.5	C19	— С18—Н18	119.6		
H1A—C1—H1B		109.5	C17	7—С18—Н18	119.6		
O4—C1—H1C		109.5	C18	3—C19—C20	120.0	6 (19)	
H1A—C1—H1C		109.5	C18	3—С19—Н19	120.0		
H1B—C1—H1C		109.5	C20)—С19—Н19	120.0		
O4—C2—C3		125.62 (19)	C21		120.5	5 (19)	
O4—C2—C7		113.63 (17)	C21	—С20—Н20	119.7		
C3—C2—C7		120.7 (2)	C19	9—С20—Н20	119.7		

C2—C3—C4	120.8 (2)	C20—C21—O3		125.44 (18)
С2—С3—Н3	119.6	C20-C21-C16		121.19 (19)
С4—С3—Н3	119.6	O3—C21—C16		113.37 (17)
C5—C4—C3	120.1 (2)	O3—C22—H22A		109.5
C5—C4—H4	119.9	O3—C22—H22B		109.5
C3—C4—H4	119.9	H22A—C22—H22B		109.5
C4—C5—C6	120.6 (2)	O3—C22—H22C		109.5
С4—С5—Н5	119.7	H22A—C22—H22C		109.5
С6—С5—Н5	119.7	H22B—C22—H22C		109.5
C7—C6—C8	122.36 (17)	N4—C23—Co1		177.41 (19)
C7—C6—C5	120.13 (19)	C23—Co1—N1		92.35 (8)
C8—C6—C5	117.48 (19)	C23—Co1—O1		90.96 (7)
O2—C7—C6	125.07 (17)	N1-Co1-01		176.68 (7)
O2—C7—C2	117.38 (17)	C23—Co1—N2		90.42 (8)
C6—C7—C2	117.53 (17)	N1—Co1—N2		85.55 (7)
N1—C8—C6	126.20 (18)	O1—Co1—N2		94.73 (6)
N1—C8—H8	116.9	C23—Co1—O2		91.57 (8)
С6—С8—Н8	116.9	N1—Co1—O2		94.58 (6)
C14—C9—C10	120.28 (18)	O1—Co1—O2		85.03 (6)
C14—C9—N1	114.50 (16)	N2—Co1—O2		178.00 (7)
C10-C9-N1	125.23 (18)	C23—Co1—O5		178.11 (7)
C11—C10—C9	119.3 (2)	N1—Co1—O5		87.05 (6)
C11-C10-H10	120.3	01—Co1—O5		89.65 (6)
С9—С10—Н10	120.3	N2—Co1—O5		87.75 (6)
C10-C11-C12	120.7 (2)	O2—Co1—O5		90.26 (6)
C10-C11-H11	119.7	C8—N1—C9		121.80 (16)
C12-C11-H11	119.7	C8—N1—Co1		125.49 (14)
C13—C12—C11	120.7 (2)	C9—N1—Co1		112.69 (12)
C13—C12—H12	119.7	C15—N2—C14		122.36 (16)
C11—C12—H12	119.7	C15—N2—Co1		125.09 (13)
C12-C13-C14	119.5 (2)	C14—N2—Co1		112.53 (12)
C12—C13—H13	120.2	C16-O1-Co1		125.94 (12)
C14—C13—H13	120.2	C7—O2—Co1		126.13 (12)
C9—C14—C13	119.50 (18)	C21—O3—C22		117.74 (17)
C9—C14—N2	114.59 (16)	C2—O4—C1		117.87 (19)
C13—C14—N2	125.90 (18)	Co1—O5—H51		107.7
N2-C15-C17	126.06 (18)	Co1—O5—H52		124.8
N2—C15—H15	117.0	H51—O5—H52		103.9
C17—C15—H15	117.0	N3—C24—C25		178.4 (4)
O1—C16—C17	124.47 (17)	C24—C25—H25A		109.5
O1—C16—C21	117.89 (17)	C24—C25—H25B		109.5
C17—C16—C21	117.64 (17)	H25A—C25—H25B		109.5
C16—C17—C15	122.53 (17)	C24—C25—H25C		109.5
C16—C17—C18	119.65 (18)	H25A—C25—H25C		109.5
C15—C17—C18	117.79 (18)	H25B—C25—H25C		109.5
Hydrogen-bond geometry $(\hat{A} \circ)$				
		TT 4	D (р. н. <i>(</i>
D—H···A	<i>D</i> —Н	H···A	$D^{\cdots}A$	D—H···A

O5—H51…O3 ⁱ	0.85	2.33	2.922 (2)	127
O5—H51…O1 ⁱ	0.85	2.00	2.799 (2)	156
O5—H52···O2 ⁱ	0.85	2.24	2.813 (2)	124
O5—H52···O4 ⁱ	0.85	2.10	2.902 (2)	158
C10—H10…N4 ⁱⁱ	0.93	2.61	3.433 (3)	148
C15—H15…N3	0.93	2.56	3.440 (3)	159

Symmetry codes: (i) -x+2, -y, -z; (ii) -x+2, y+1/2, -z+1/2.

Fig. 1

Fig. 2